Intracortical pathways mediate nonlinear fast oscillation (>200 Hz) interactions within rat barrel cortex.
نویسندگان
چکیده
Whisker evoked fast oscillations (FOs; >200 Hz) within the rodent posteromedial barrel subfield are thought to reflect very rapid integration of multiwhisker stimuli, yet the pathways mediating FO interactions remain unclear and may involve interactions within thalamus and/or cortex. In the present study using anesthetized rats, a cortical incision was made between sites representing the stimulated whiskers to determine how intracortical networks contributed to patterns of FOs. With cortex intact, simultaneous stimulation of a pair of whiskers aligned in a row evoked supralinear responses between sites separated by several millimeters. In contrast, stimulation of a nonadjacent pair of whiskers within an arc evoked FOs with no evidence for nonlinear interactions. However, stimulation of an adjacent pair of whiskers in an arc did evoke supralinear responses. After a cortical cut, supralinear interactions associated with FOs within a row were lost. These data indicate a distinct bias for stronger long-range connectivity that extends along barrel rows and that horizontal intracortical pathways exclusively mediate FO-related integration of tactile information.
منابع مشابه
Spatiotemporal organization of fast (>200 Hz) electrical oscillations in rat Vibrissa/Barrel cortex.
A 64-channel electrode array was used to study the spatial and temporal characteristics of fast (>200 Hz) electrical oscillations recorded from the surface of rat cortex in both awake and anesthetized animals. Transient vibrissal displacements were effective in evoking oscillatory responses in the vibrissa/barrel field and were tightly time-locked to stimulus onset, coinciding with the earliest...
متن کاملEffects of ventrobasal lesion and cortical cooling on fast oscillations (>200 Hz) in rat somatosensory cortex.
High-frequency oscillatory activity (>200 Hz) termed "fast oscillations" (FO) have been recorded in the rodent somatosensory cortex and may reflect very rapid integration of vibrissal information in sensory cortex. Yet, while electrophysiological correlates suggest that FO is generated within intracortical networks, contributions of subcortical structures along the trigeminal pathway remain unc...
متن کاملDirect imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV-V of the rat whisker-barrel cortex
The spatiotemporal characteristics of the hemodynamic response to increased neural activity were investigated at the level of individual intracortical vessels using BOLD-fMRI in a well-established rodent model of somatosensory stimulation at 11.7 T. Functional maps of the rat barrel cortex were obtained at 150 × 150 × 500 μm spatial resolution every 200 ms. The high spatial resolution allowed s...
متن کاملClassic Cadherins Mediate Selective Intracortical Circuit Formation in the Mouse Neocortex.
Understanding the molecular mechanisms underlying the formation of selective intracortical circuitry is one of the important questions in neuroscience research. "Barrel nets" are recently identified intracortical axonal trajectories derived from layer 2/3 neurons in layer 4 of the primary somatosensory (barrel) cortex. Axons of layer 2/3 neurons are preferentially distributed in the septal regi...
متن کاملBOLD responses to trigeminal nerve stimulation.
The current study investigates a new model of barrel cortex activation using stimulation of the infraorbital branch of the trigeminal nerve. A robust and reproducible activation of the rat barrel cortex was obtained following trigeminal nerve stimulation. Blood oxygen level-dependent (BOLD) effects were obtained in the primary somatosensory barrel cortex (S1BF), the secondary somatosensory cort...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 93 5 شماره
صفحات -
تاریخ انتشار 2005